3.410 \(\int \frac {1}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx\)

Optimal. Leaf size=94 \[ \frac {2 \sqrt {-b} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} \sqrt {b x+c x^2} \sqrt {d+e x}} \]

[Out]

2*EllipticF(c^(1/2)*x^(1/2)/(-b)^(1/2),(b*e/c/d)^(1/2))*(-b)^(1/2)*x^(1/2)*(c*x/b+1)^(1/2)*(1+e*x/d)^(1/2)/c^(
1/2)/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.04, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {715, 117, 116} \[ \frac {2 \sqrt {-b} \sqrt {x} \sqrt {\frac {c x}{b}+1} \sqrt {\frac {e x}{d}+1} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} \sqrt {b x+c x^2} \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[d + e*x]*Sqrt[b*x + c*x^2]),x]

[Out]

(2*Sqrt[-b]*Sqrt[x]*Sqrt[1 + (c*x)/b]*Sqrt[1 + (e*x)/d]*EllipticF[ArcSin[(Sqrt[c]*Sqrt[x])/Sqrt[-b]], (b*e)/(c
*d)])/(Sqrt[c]*Sqrt[d + e*x]*Sqrt[b*x + c*x^2])

Rule 116

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d), 2]*E
llipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-(b/d), 2])], (c*f)/(d*e)])/(b*Sqrt[e]), x] /; FreeQ[{b, c, d, e, f}, x]
 && GtQ[c, 0] && GtQ[e, 0] && (PosQ[-(b/d)] || NegQ[-(b/f)])

Rule 117

Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Dist[(Sqrt[1 + (d*x)/c]
*Sqrt[1 + (f*x)/e])/(Sqrt[c + d*x]*Sqrt[e + f*x]), Int[1/(Sqrt[b*x]*Sqrt[1 + (d*x)/c]*Sqrt[1 + (f*x)/e]), x],
x] /; FreeQ[{b, c, d, e, f}, x] &&  !(GtQ[c, 0] && GtQ[e, 0])

Rule 715

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(Sqrt[x]*Sqrt[b + c*x])/Sqrt[
b*x + c*x^2], Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] &
& NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {d+e x} \sqrt {b x+c x^2}} \, dx &=\frac {\left (\sqrt {x} \sqrt {b+c x}\right ) \int \frac {1}{\sqrt {x} \sqrt {b+c x} \sqrt {d+e x}} \, dx}{\sqrt {b x+c x^2}}\\ &=\frac {\left (\sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}\right ) \int \frac {1}{\sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}}} \, dx}{\sqrt {d+e x} \sqrt {b x+c x^2}}\\ &=\frac {2 \sqrt {-b} \sqrt {x} \sqrt {1+\frac {c x}{b}} \sqrt {1+\frac {e x}{d}} F\left (\sin ^{-1}\left (\frac {\sqrt {c} \sqrt {x}}{\sqrt {-b}}\right )|\frac {b e}{c d}\right )}{\sqrt {c} \sqrt {d+e x} \sqrt {b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.12, size = 94, normalized size = 1.00 \[ -\frac {2 x^{3/2} \sqrt {\frac {\frac {b}{x}+c}{c}} \sqrt {\frac {\frac {d}{x}+e}{e}} F\left (\sin ^{-1}\left (\frac {\sqrt {-\frac {b}{c}}}{\sqrt {x}}\right )|\frac {c d}{b e}\right )}{\sqrt {-\frac {b}{c}} \sqrt {x (b+c x)} \sqrt {d+e x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[d + e*x]*Sqrt[b*x + c*x^2]),x]

[Out]

(-2*Sqrt[(c + b/x)/c]*Sqrt[(e + d/x)/e]*x^(3/2)*EllipticF[ArcSin[Sqrt[-(b/c)]/Sqrt[x]], (c*d)/(b*e)])/(Sqrt[-(
b/c)]*Sqrt[x*(b + c*x)]*Sqrt[d + e*x])

________________________________________________________________________________________

fricas [F]  time = 1.22, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {c x^{2} + b x} \sqrt {e x + d}}{c e x^{3} + b d x + {\left (c d + b e\right )} x^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^2 + b*x)*sqrt(e*x + d)/(c*e*x^3 + b*d*x + (c*d + b*e)*x^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + b x} \sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + b*x)*sqrt(e*x + d)), x)

________________________________________________________________________________________

maple [A]  time = 0.07, size = 113, normalized size = 1.20 \[ \frac {2 \sqrt {-\frac {c x}{b}}\, \sqrt {-\frac {\left (e x +d \right ) c}{b e -c d}}\, \sqrt {\frac {c x +b}{b}}\, \sqrt {e x +d}\, \sqrt {\left (c x +b \right ) x}\, b \EllipticF \left (\sqrt {\frac {c x +b}{b}}, \sqrt {\frac {b e}{b e -c d}}\right )}{\left (c e \,x^{2}+b e x +c d x +b d \right ) c x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x)

[Out]

2*EllipticF(((c*x+b)/b)^(1/2),(1/(b*e-c*d)*b*e)^(1/2))*(-1/b*c*x)^(1/2)*(-(e*x+d)/(b*e-c*d)*c)^(1/2)*((c*x+b)/
b)^(1/2)*b*(e*x+d)^(1/2)*((c*x+b)*x)^(1/2)/c/x/(c*e*x^2+b*e*x+c*d*x+b*d)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {c x^{2} + b x} \sqrt {e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)^(1/2)/(c*x^2+b*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x)*sqrt(e*x + d)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\sqrt {c\,x^2+b\,x}\,\sqrt {d+e\,x}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((b*x + c*x^2)^(1/2)*(d + e*x)^(1/2)),x)

[Out]

int(1/((b*x + c*x^2)^(1/2)*(d + e*x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\sqrt {x \left (b + c x\right )} \sqrt {d + e x}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*x+d)**(1/2)/(c*x**2+b*x)**(1/2),x)

[Out]

Integral(1/(sqrt(x*(b + c*x))*sqrt(d + e*x)), x)

________________________________________________________________________________________